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Abstract. Light, nutrient availability, and flow are strong factors controlling the elemental composition
and biomass of epilithon in temperate stream ecosystems. However, comparatively little is known about
these relationships in tropical streams. We investigated how gradients of light and nutrient availability,
seasonality, and habitat influenced epilithon biomass, chlorophyll a, and nutrient ratios in montane
streams of Trinidad, West Indies. We sampled 4 focal tributaries of a single river, 2 of which had canopies
experimentally thinned, every other month over a 2-y period to observe temporal dynamics and light
effects on epilithon. We also sampled 18 sites across Trinidad’s Northern Range Mountains once each in a
wet and dry season to examine the effects of naturally occurring differences in light and dissolved nutrient
availability on epilithic characteristics. We found greater chlorophyll a concentrations in habitats with
greater light availability, but the effect of light on epilithon stoichiometry differed between the site-survey
and focal-tributary data. In general, epilithic C:nutrient ratios decreased with increasing dissolved nutrient
concentrations, but relationships between nutrient availability and biomass probably were obscured by
naturally high dissolved N and P concentrations in many of the streams. Season and habitat type had
profound effects on epilithon variables. Biomass and % C generally decreased in riffles and under wet-
season conditions. These results suggest multiple controls for the quantity and quality of stream epilithon
and have important implications for in-stream consumers.
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Ecological stoichiometry is the study of the mass
balance of essential elements as they cycle through the
biosphere (Sterner and Elser 2002). Investigators have
applied a stoichiometric framework to gain insight
into evolution (Jeyasingh and Weider 2007), popula-
tion dynamics (Nakazawa 2011), trophic interactions
(Dickman et al. 2008), and ecosystem function (Sterner
and Elser 2002, Schade et al. 2005). Epilithon is a rock-
bound biofilm comprising algae, fungi, bacteria,
extracellular exudates, and detritus. It is an important
basal resource in streams, and its elemental compo-
sition is plastic (Sterner and Elser 2002, reviewed by
Cross et al. 2005). Algae constitute only a portion of
biofilm assemblages, but shifts in algal nutrient
quality affect epilithon stoichiometry as a whole, even
when algae are at low densities (Frost et al. 2005).
Nutrient imbalances often arise between grazing
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macroinvertebrates and their food resources because of
algal stoichiometric plasticity. These imbalances have
consequences for foodweb structure and nutrient
cycling (Dickman et al. 2008, Small and Pringle 2010).

Light availability controls epilithon community
composition, quantity, and quality. Increasing light
availability often leads to increased algal biomass
(e.g., Sanches et al. 2011) and higher C:nutrient ratios
because of increased C fixation relative to nutrient
acquisition (Sterner et al. 1997, Sterner and Elser 2002,
Dickman et al. 2006). Phytoplankton adapted to low-
light environments have higher chloroplast densities
and elevated chlorophyll concentrations relative to
those adapted to high-light environments (Geider
et al. 1998, reviewed by Arrigo 2005). Chlorophyll has
relatively high N and low P content, so greater
intracellular chlorophyll concentrations lead to higher
N:P ratios in low-light-adapted cells relative to those
growing under high-light conditions (Geider et al.
1998, reviewed by Arrigo 2005). P content of algae
also may increase at low light levels because of
increased phospholipid production resulting from
photoacclimation (Dickman et al. 2006).

Nutrient availability strongly affects epilithon stoi-
chiometry (Sterner and Elser 2002) and biomass
(Kohler et al. 2011), but above certain concentrations,
nutrients may no longer stimulate primary produc-
tion in streams (Newbold 1992). Algal cells assimilate
N and P in excess of their metabolic requirements
when nutrient concentrations are high, presumably as
a means of coping with variable resource availability
(Sterner and Elser 2002, Dodds and Whiles 2010). As
a result, epilithon nutrient content can increase in
response to increasing nutrient concentrations, there-
by causing C:nutrient ratios to decline (Fanta et al.
2010, Small and Pringle 2010, Kohler et al. 2011).
Stream nutrient concentrations vary with local and
regional vegetation patterns, geologic conditions, and
a suite of human activities in watersheds (Carpenter
et al. 1998, Kemp and Dodds 2001, Neill et al. 2001,
Wetzel 2001). Combined, these factors create consid-
erable heterogeneity in nutrient concentrations across
streams in relatively close proximity to one another.

Spatial and temporal heterogeneity of light and
nutrients create a diverse resource template across
which nutrient limitation and algal stoichiometry can
vary (Hill et al. 2011). The Light:Nutrient Hypothesis
(LNH; Sterner et al. 1997) predicts that epilithon
nutrient content will increase with increasing nutrient
availability and decrease with increasing light avail-
ability as a result of the mechanisms outlined above.
Most tests of the LNH have been restricted to lentic
(Hillebrand et al. 2004, Dickman et al. 2006, Sanches
et al. 2011) or artificial habitats/substrata (Fanta et al.

2010, Guariento et al. 2011, Hill et al. 2011) and have
provided mixed support for LNH predictions (Hill
and Fanta 2008, Hill et al. 2009, Liess et al. 2009). Thus,
considerable uncertainty exists regarding how light
and nutrients interact to shape epilithon properties.

In lotic ecosystems, high and low flows have the
potential to alter ecosystem structure and function
profoundly through scour and accrual of epilithon
(Biggs and Thomsen 1995, Dodds et al. 1996, Francoeur
and Biggs 2006). Variation in discharge and flow
velocity influence the flux of nutrients to epilithic
communities (Dodds and Biggs 2002) and shape algal
community structure (Biggs et al. 1998, Francoeur and
Biggs 2006). By extension, it is reasonable to predict
that flow also affects epilithon stoichiometry, and if so,
both spatial and temporal variation in flow should be
taken into consideration when assessing epilithon
communities in natural streams. Spatial variation can
be manifested in differences between pools and riffles,
which have very different benthic flow characteristics.
In tropical streams, temporal variation may result from
distinct wet–dry seasons (Wantzen et al. 2006),
providing a unique opportunity to investigate how
habitat and seasonality combine to influence epilithon
biomass and stoichiometry.

We examined how epilithon is influenced by light,
nutrients, and flow in Neotropical streams. Specifi-
cally, we: 1) conducted a 2-y experiment in 4 focal
streams to assess the effects of flow variability and
manipulated canopy cover on epilithon biomass,
chlorophyll a, and stoichiometry and 2) sampled 18
sites in Trinidad’s Northern Mountain Range to
examine the effects of natural gradients of light
availability and dissolved nutrient concentrations on
epilithon characteristics. Based on the LNH, we
predicted that increased light availability would
result in epilithon with greater C:nutrient ratios and
lower N:P because of increased photosynthetic rates
and lower intracellular chlorophyll a concentrations
(Sterner et al. 1997). We also expected C:nutrient
ratios to decrease with greater nutrient concentra-
tions in the water column because of alleviation of
limitation (Hillebrand and Kahlert 2001). Last, we
predicted that epilithon biomass and C:nutrient ratios
should decrease in the wet season because of more
frequent scouring, which would decrease the relative
amount of detritus associated with epilithon.

Methods

Study sites

We worked in the Northern Range of Trinidad,
West Indies, and used 2 field approaches. First, we
quantified temporal trends in epilithon stoichiometry
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and biomass in 4 first-order streams in the Guanapo
drainage: Lower La Laja (LOL), Upper La Laja (UPL),
Taylor (TAY), and Caigual (CAI) (Fig. 1). These 4
headwater streams, collectively termed focal streams,
are relatively undisturbed, although they drain small
areas of active and inactive citrus, coffee, and cocoa
plantations (Helson et al. 2006) and are similar in
geology and floral communities. We sampled streams
every other month from September 2007 to September
2009. In July 2007 and July 2008, we experimentally
thinned riparian canopies at UPL (4% canopy
reduction) and TAY (28% canopy reduction) to create
elevated light conditions. We maintained canopy
treatments throughout the sampling period.

Second, we surveyed 18 stream sites from 6 river
basins in Trinidad’s Northern Range (Fig. 1). These
streams represented a broad range of natural canopy
cover and nutrient concentrations. Thus, we were
able to examine the effects of light and nutrients on
epilithon biomass and stoichiometry across larger
gradients than existed in focal streams. Three of these
drainages, the Turure, Quare, and Aripo, have
prominent CaCO3 formations (tufa; see Day and
Chenoweth 2004), and consequently have low natural
concentrations of soluble reactive P (SRP; ,10 mg/L)
caused by Ca–P precipitation, but varying levels
of dissolved inorganic N (DIN). The Arima and
Guanapo Rivers have relatively high DIN and SRP
concentrations from natural processes (Guanapo) and
agricultural activity (Arima). In contrast, the Mar-
ianne River system is relatively pristine (Helson et al.
2006) with low levels of DIN and SRP. In each of the 6
basins, we sampled epilithon from headwaters (UP),
midreaches (MD), and downstream (DN) reaches to

examine natural canopy effects. We sampled once in
the wet season (June–December) and once in the dry
season (January–May) to evaluate seasonal differenc-
es. The Turure, Arima, and Quare rivers were
sampled in July 2008 (wet season) and March 2009
(dry season), whereas the Aripo, Marianne, and
Guanapo were sampled in July 2007 and March 2009.

Sampling procedure

Focal streams.—In each focal stream, we established
3 transects 30 to 50 m apart, and sampled epilithon
from pools and riffles separately along each transect
on each date. We took §5 samples at randomly
chosen locations in each habitat with a modified Loeb
sampler (Loeb 1981), which is a cylinder (5.07 cm2)
with a brush-fitted plunger, to remove epilithon from
substrata. We combined all samples from a single
habitat type into a single slurry and kept slurries in a
cooler until they could be processed that evening. At
each transect, we measured canopy cover periodically
with a hemispherical densiometer (method of Lem-
mon 1956), and we measured light continuously with
HoboH light loggers (Onset Computer Corp., Bourne,
Massachusetts). We used conversions provided by
Thimijan and Heins (1983) to convert lux to moles
quanta m22 d21 and averaged daily totals for each
stream for each month. In August 2008, a major flood
carried away many of our light loggers, some of
which were not recovered. For UPL and LOL, we
averaged the available values from 2008 to substitute
for missing data (May–August 2008). For CAI, we
averaged later values because no previous data were
available. We are confident that values were compa-
rable based on densiometer estimates and historical
trends. For TAY, we lost all prethinning light values,
so we were unable to use previous or subsequent
data. However, we placed loggers in the unthinned
reach immediately below the experimental site in
April 2009 and used these data to estimate light
conditions before the canopy was reduced. We based
flow measurements on stage, which was measured at
the bottom of the LOL reach with a Solinst pressure
transducer (Solinst Canada, Georgetown, Ontario)
every 30 min.

Site survey.—We established 10 transects 10 to 20 m
apart at each survey site. We alternately sampled pool
and riffle habitats, resulting in 5 pool and 5 riffle
samples per site per season. In 2008 and 2009, we
sampled epilithon at each transect by scrubbing the
tops of 3 rocks with a toothbrush to yield a single
aggregated slurry for each transect. We traced the
outline of each rock onto waterproof paper and
calculated rock surface area in the laboratory. At
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FIG. 1. Map of drainages sampled in the Northern Range
of Trinidad (1 = Marianne, 2 = Arima, 3 = Guanapo, 4 =
Aripo, 5 = Quare, 6 = Turure). Top center is detail of
Heights of Guanapo from the Guanapo drainage, which
contains the 4 focal sites (Lower La Laja = LOL, Upper La
Laja = UPL, Taylor = TAY, and Caigual = CAI).
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streams sampled in the wet season of 2007 and at the
MD Turure site where loose rocks were not present
because of carbonate precipitation, we collected pool
and riffle samples with a Loeb sampler as explained
above. Loeb samplers yielded higher estimates of ash-
free dry mass (AFDM) and chlorophyll a than rock
scrapings (TJK, unpublished data), so we used only
stoichiometric data from Loeb samples. Last, we used
a densiometer to estimate % canopy cover at each
sampling site, and we used the method of Gore (2006)
to estimate stream discharge.

Epilithon processing

We took quantitative subsamples from each epili-
thon slurry to estimate chlorophyll a, AFDM, and
C:N:P stoichiometry. We filtered chlorophyll a sub-
samples through precombusted 25-mm GF/F filters
and froze the filters until analysis. Within 30 d of
sampling, we extracted samples in 90% reagent-grade
ethanol for 24 h in the dark. We used an Aquafluor
handheld fluorometer (Turner Designs, Sunnyvale,
California) to estimate active chlorophyll a and
corrected for phaeophytin (Parsons et al. 1984). We
collected a 2nd subsample for estimation of AFDM on
a preweighed, precombusted 47-mm GF/F filter. We
combusted the subsample in a muffle furnace at
500uC and reweighed to calculate AFDM/m2. We
divided chlorophyll a values by corresponding AFDM
values to create an alternative formulation of the
autotrophic index (AI), which is an indicator of
trophic state (Flotemersch et al. 2006).

We dried subsamples for C:N:P analysis in an oven
at 50–55uC and ground them to a fine powder. We
measured C and N content with a COSTECH
Analytical ECS 4010 Elemental Analyzer (Costech
Analytical Technologies, Valencia, California) and
corrected for inorganic C with a fumigation method
similar to that used by Hedges and Stern (1984). We
combusted the P subsample in a muffle furnace at
500uC for 1 h, digested it with 1 N HCl, and analyzed
it as for SRP (Murphy and Riley 1962) with a Cary 100
UV–visible spectrophotometer (Agilent Technologies,
Palo Alto, California). The resulting values were then
converted to molar C:N, C:P, and N:P ratios.

Nutrients

We collected stream water for water chemistry
analyses on each sampling date at focal and survey
streams. We used an Aquafluor handheld fluorometer
to measure NH4

+ immediately by the method of
Holmes et al. (1999) as modified by Taylor et al.
(2007). We quantified NO3

2 and NO2
2 with a Dionex

ICS-90 Ion Chromatography System equipped with a

Dionex Automated Sampler and Chromeleon soft-
ware (Dionex Corporation, Sunnyvale, California).
NO2

2 was never detectable in samples (,5 mg/L).
Therefore, we calculated DIN as the sum of NH4

+ and
NO3

2. We measured SRP with the method developed
by Murphy and Riley (1962) on a Pharmacia LKB
Ultraspec III spectrophotometer (model: 80-2097-62;
Pharmacia Biotech, Uppsala, Sweden) with a detec-
tion limit of 1.5 mg/L.

Statistical analysis

Prior to analyses, we conducted an exploratory data
analysis (Zuur et al. 2010) to identify potential
outliers, lack of variance homogeneity, and temporal
independence. We log10(x)-transformed all variables
that were not normally distributed to satisfy the
assumption of normality. We used generalized least
squares (GLS) regression models to analyze epilithon
chlorophyll a, AFDM, AI, and molar nutrient ratios
because this method allowed us to account for
heterogeneity of variances among levels and for
temporal autocorrelation in the focal-stream data
(Pinheiro and Bates 2001).

The global model (i.e., models with all explanatory
variables) for both the focal and survey streams had
fixed effects that included stream identity, habitat
(pool or riffle), season (wet or dry), and dissolved
nutrients (NH4

+, NO3
2, and SRP). We included light

in the model as photosynthetically active radiation
(PAR) for focal streams and as % open canopy for
survey streams. In our analysis of the focal stream
reaches, we also included the number of days since
stage increases (flow events) of different sizes to
examine the effect of flow and associated scour on
epilithon characteristics. In cases where multiple flow
magnitudes were significant, the final model included
the flow condition that produced the lowest Akaike
Information Criterion (AIC) value. Occasionally,
variation differed between streams or habitats. There-
fore, we used the varIdent variance structure in our
GLS regressions to allow levels to vary independently
within categorical variables, thereby avoiding viola-
tion of assumptions of homogeneity of variance (Zuur
et al. 2009). Last, we used an autoregressive moving
average (ARMA) serial correlation structure for our
focal site data to remove temporal nonindependence
by modeling each date as a function of previous dates
(Zuur et al. 2009).

We investigated optimal model structure for each
variable by using restricted maximum likelihood
(REML) on global models to test for the best
combination of random effects (i.e., variance and
correlation structures), followed by maximum likeli-
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hood (ML) for fixed effects (Diggle et al. 2002). Model
improvement was assessed based on a reduction in
the AIC value for a given model and likelihood ratio
(L-ratio) tests (Quinn and Keough 2002). Once we had
created GLS models and assessed structure, we
refined models by eliminating nonsignificant terms
(i.e., backward selection) using ML to retrieve the
minimum adequate model and used REML to report
final models (West et al. 2006). We conducted an L-
ratio test with ML to identify significance of individ-
ual variables. This test compared the minimum
adequate model with the same model without the
given variable. We set significance at a = 0.05. We ran

all statistical analyses with the nlme package (Pinheiro
et al. 2006) in R (version 2.9.2; R Development Core
Team, Vienna, Austria). The complete output for the
full models is presented in Table 1 for the focal
streams and Table 2 for the survey streams.

Results

Focal streams

Light, stage, and dissolved nutrients.—Scouring flow
events were more frequent during the wet season,
with fewer days between events raising stream stage
§8 cm (t-test, t = 16.81, p , 0.001) or 16 cm (t-test, t =
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TABLE 1. Minimum adequate generalized least squares models for epilithon variables in focal streams (see Fig. 1 for stream
names). df = degrees of freedom, L-ratio = log likelihood ratio, vf = variance function, AFDM = ash-free dry mass, AI =
autotrophic index, SRP = soluble reactive P, since.8 = days since an 8-cm increase in stream stage, since.16 = days since a 16-cm
increase in stream stage.

Epilithon
variable df L-ratio vf Coefficients Value SE t-value p-value

Chlorophyll a 10 2259.85 ,1: stream 3 month Intercept 2.573 0.777 3.312 0.001
Stream (LOL) 0.790 0.151 5.222 0.000
Stream (TAY) 0.470 0.140 3.345 0.001
Stream (UPL) 0.185 0.139 1.328 0.186
Season (wet) 21.588 0.157 210.099 0.000
Habitat (riffle) 20.435 0.094 24.645 0.000
Since.8 20.387 0.077 25.050 0.000
Light 0.442 0.093 4.764 0.000
SRP 20.624 0.161 23.869 0.000

AFDM 12 2199.0 ,1: month 3 habitat (Intercept) 4.164 0.640 6.505 0.000
Habitat (riffle) 21.289 0.103 212.486 0.000
Since.16 0.174 0.043 4.006 0.000
NO3

2 20.741 0.124 25.986 0.000
SRP 0.600 0.126 4.767 0.000

AI 17 2127.14 ,1: stream 3 month Intercept 2.424 0.381 6.369 0.000
Stream (LOL) 0.506 0.117 4.312 0.000
Stream (TAY) 0.083 0.105 0.787 0.432
Stream (UPL) 0.291 0.117 2.483 0.014
Habitat (riffle) 0.595 0.049 12.065 0.000
Season (wet) 20.368 0.105 23.499 0.001
SRP 20.568 0.114 24.989 0.000

C:N 21 146.49 none Intercept 2.966 0.092 32.360 0.000
Habitat (riffle) 20.180 0.015 212.283 0.000
Light 20.032 0.010 23.116 0.002
NH4

+ 20.044 0.018 22.418 0.017
C:P 14 281.12 ,1: month 3 habitat Intercept 6.305 0.197 31.990 0.000

Stream (LOL) 0.396 0.070 5.632 0.000
Stream (TAY) 0.083 0.072 1.156 0.249
Stream (UPL) 0.262 0.062 4.201 0.000
Season (wet) 20.180 0.046 23.873 0.000
SRP 20.302 0.060 25.028 0.000

N:P 16 238.09 ,1: month 3 habitat Intercept 3.951 0.201 19.696 0.000
Stream (LOL) 0.370 0.057 6.541 0.000
Stream (TAY) 0.195 0.054 3.615 0.000
Stream (UPL) 0.192 0.050 3.814 0.000
Habitat (riffle) 0.103 0.045 2.319 0.021
Season (wet) 20.259 0.050 25.136 0.000
Since.8 20.054 0.022 22.403 0.017
SRP 20.299 0.051 25.877 0.000
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TABLE 2. Minimum adequate generalized least squares models for epilithon variables in survey streams (see Fig. 1 for
drainages). Chlorophyll a, ash-free dry mass (AFDM), and autotrophic index (AI) values from samples collected with Loeb
samplers were excluded (see text for explanation). df = degrees of freedom, L-ratio = log likelihood ratio, vf = variance function,
SRP = soluble reactive P.

Epilithon
variable df L-ratio vf Coefficients Value SE t–value p–value

Chlorophyll a 10 204.11 ,1: site 3 season 3
habitat

Intercept 2.578 0.198 13.033 0.000

Stream (Aripo) 20.138 0.136 21.009 0.314
Stream (Guanapo) 0.093 0.137 0.681 0.497
Stream (Marianne) 20.522 0.146 23.569 0.000
Stream (Quare) 20.215 0.118 21.825 0.069
Stream (Turure) 20.544 0.122 24.469 0.000
Season (wet) 21.588 0.102 215.549 0.000
Open canopy 0.469 0.059 7.933 0.000
SRP 20.406 0.061 26.682 0.000

AFDM 13 2122.59 ,1: site 3 season Intercept 2.173 0.111 19.523 0.000
Stream (Aripo) 0.284 0.098 2.899 0.004
Stream (Guanapo) 0.103 0.098 1.051 0.295
Stream (Marianne) 20.226 0.098 22.302 0.022
Stream (Quare) 0.264 0.066 3.980 0.000
Stream (Turure) 20.008 0.073 20.112 0.911
Season (wet) 20.190 0.060 23.141 0.002
Habitat (riffle) 20.702 0.054 213.089 0.000
Open canopy 20.153 0.035 24.409 0.000

AI 22 2130.81 ,1: stream 3 habitat Intercept 1.013 0.118 8.573 0.000
Stream (Aripo) 20.073 0.087 20.839 0.402
Stream (Guanapo) 0.102 0.089 1.140 0.255
Stream (Marianne) 0.102 0.088 1.151 0.251
Stream (Quare) 20.283 0.063 24.514 0.000
Stream (Turure) 20.245 0.059 24.156 0.000
Season (wet) 20.801 0.058 213.716 0.000
Habitat (riffle) 0.522 0.048 10.805 0.000
Open canopy 0.367 0.036 10.222 0.000
SRP 20.231 0.033 27.057 0.000

C:N 45 2664.89 ,1: stream 3 habitat Intercept 13.682 0.312 43.787 0.000
Stream (Aripo) 0.372 0.388 0.958 0.339
Stream (Guanapo) 20.977 0.314 23.114 0.002
Stream (Marianne) 21.622 0.318 25.106 0.000
Stream (Quare) 1.491 0.328 4.551 0.000
Stream (Turure) 2.881 0.290 9.919 0.000
Season (wet) 21.483 0.193 27.678 0.000
Habitat (riffle) 22.164 0.218 29.929 0.000
NH4

+ 22.011 0.229 28.798 0.000
C:P 35 2112.09 ,1: stream 3 habitat Intercept 7.392 0.227 32.542 0.000

Stream (Aripo) 0.184 0.076 2.434 0.016
Stream (Guanapo) 20.030 0.067 20.441 0.660
Stream (Marianne) 0.299 0.114 2.635 0.009
Stream (Quare) 20.033 0.077 20.433 0.665
Stream (Turure) 0.022 0.073 0.297 0.767
Season (wet) 20.187 0.056 23.344 0.001
Habitat (riffle) 20.363 0.039 29.368 0.000
Open canopy 0.179 0.037 4.888 0.000
SRP 20.251 0.033 27.542 0.000
NH4

+ 20.502 0.065 27.661 0.000
NO3

2 20.180 0.034 25.241 0.000
N:P 23 283.61 ,1: stream 3 season Intercept 5.030 0.205 24.569 0.000

Stream (Aripo) 0.001 0.069 0.016 0.987
Stream (Guanapo) 20.099 0.058 21.702 0.090
Stream (Marianne) 0.387 0.104 3.727 0.000
Stream (Quare) 20.207 0.070 22.951 0.003
Stream (Turure) 20.147 0.062 22.361 0.019
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16.22, p , 0.001) than during the dry season (Fig. 2).
DIN and SRP concentrations ranged from 76 to 382
and from 10 to 68 mg/L, respectively (Fig. 3A, B).
NH4

+ (t-test, t = 3.99, p , 0.001) and SRP (t-test, t =
6.78, p , 0.001) concentrations were greatest in the
dry season in all focal streams, but NO3

2 concentra-
tions did not differ between seasons. As a result,
DIN:SRP ratios were generally greater in the wet than
in the dry season, but this relationship was not
statistically significant. Fluxes of PAR were greater at
streams with experimentally thinned canopies than at
control streams. Thinning increased fluxes in UPL by
30% and TAY by 800% on average (Fig. 3C).

Epilithon biomass and stoichiometry.—Chlorophyll a
was positively related to PAR (L-ratio = 22.49, df = 9,
p , 0.001), negatively related to SRP concentrations
(L-ratio = 15.07, df = 9, p , 0.001) and days since a
§8-cm increase in stage (L-ratio = 25.14, df = 9, p ,
0.001), and differed among streams (L-ratio = 28.08,
df = 7, p , 0.001). Chlorophyll a was lower in riffles
than in pools (L-ratio = 21.43, df = 9, p , 0.001) and in
the wet than in the dry season (L-ratio = 87.81, df = 9,
p , 0.001) (Fig. 4A). AFDM increased with SRP
concentrations (L-ratio = 19.99, df = 11, p , 0.001)
and with days since a 16-cm increase in stage (L-ratio

= 13.81, df = 11, p , 0.001) and decreased with
increasing NO3

2 concentration (L-ratio = 25.86, df =
11, p , 0.001). AFDM was lower in riffles than in
pools (L-ratio = 84.24, df = 11, p , 0.001; Fig. 4B). AI
differed among streams (L-ratio = 23.15, df = 14, p ,
0.001) and was negatively related to SRP concentra-
tion (L-ratio = 17.42, df = 16, p , 0.001). AI was
greater in riffles than in pools (L-ratio = 89.81, df =
16, p , 0.001) and was lower in the wet than in the dry
season (L-ratio = 11.24, df = 16, p , 0.001) (Fig. 4C).

C:N of epilithon was lower in riffles than in pools
(L-ratio = 67.82, df = 20, p , 0.001; Fig. 4D) and was
negatively related to PAR (L-ratio = 7.34, df = 20, p =
0.007) and NH4

+ concentration (L-ratio = 4.77, df =
20, p = 0.029; Fig. 5A). C:P (L-ratio = 39.51, df = 11,
p , 0.001) and N:P (L-ratio = 37.77, df = 13, p , 0.001)
differed among streams. C:P was lower in the wet
than in the dry season (L-ratio = 12.80, df = 13, p ,
0.001; Fig. 4E) and was negatively related to SRP
concentration (L-ratio = 22.08, df = 13, p , 0.001;
Fig. 5B). N:P was higher in riffles than in pools (L-
ratio = 4.42, df = 15, p = 0.036) and lower in the wet
than in the dry season (L-ratio = 21.98, df = 15, p ,
0.001) (Fig. 4F), and negatively related to SRP con-
centration (L-ratio = 27.30, df = 15, p , 0.001; Fig. 5C)
and days since an 8-cm increase in stage (L-ratio =
0.024, df = 15, p = 0.024).

Site survey

Dissolved nutrients and canopy cover.—Water chem-
istry was strongly influenced by basin and stream
position (i.e., UP, MD, DN) (Fig. 6A, B). Nutrient
concentrations varied seasonally. SRP concentrations
were significantly greater in the dry than in the wet
season (t-test, t = 4.86, p , 0.001), and NH4

+

concentrations were greater in the wet than in the
dry season (t-test, t = 24.8853, p , 0.001). However,
NO3

2 concentrations did not differ between seasons.
Consequently, molar DIN:SRP was greater in the wet
than in the dry season. DN sites had the most open
canopies (Fig. 6C) and greatest discharges, averaging
25% open canopy and 326 L/s, respectively. MD and
UP sites were similar, with mean % open canopy of
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TABLE 2. Continued.

Epilithon
variable df L-ratio vf Coefficients Value SE t–value p–value

Season (wet) 20.108 0.050 22.147 0.033
Open canopy 0.127 0.035 3.661 0.000
SRP 20.172 0.028 26.193 0.000
NH4

+ 20.452 0.061 27.427 0.000
NO3

2 20.217 0.033 26.662 0.000

FIG. 2. Stage measured at the bottom of Lower La Laja (a
focal site) throughout the study period. Grey bars indicate
dry-season months.
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8.4 and 7.0% and mean discharge of 43.4 and 35.7 L/s,
respectively.

Epilithon biomass and stoichiometry.—Chlorophyll a
differed among streams (L-ratio = 30.77, df = 5, p ,
0.001) and was negatively related to SRP concentra-
tion (L-ratio = 42.46, df = 9, p , 0.001), positively
related to % open canopy (L-ratio = 57.93, df = 9, p ,
0.001), and was lower in the wet than in the dry

season (L-ratio = 172.98, df = 9, p , 0.001; Fig. 7A, B).
AFDM differed among streams (L-ratio = 40.69, df =
8, p , 0.001), was lower in the wet than in the dry
season (L-ratio = 9.223, df = 12, p = 0.002) and in
riffles than in pools (L-ratio = 117.69, df = 12, p ,
0.001) (Fig. 7C, D), and decreased with % open
canopy (L-ratio = 15.95, df = 12, p , 0.001). AI
differed among streams (L-ratio = 34.16, df = 17, p ,
0.001) and was lower in the wet than in the dry season
(L-ratio = 90.58, df = 21, p , 0.001) and higher in
riffles than in pools (L-ratio = 76.41, df = 21, p ,
0.001) (Fig. 7E, F). AI was negatively related to SRP
concentration (L-ratio = 37.11, df = 21, p , 0.001) and
increased with % open canopy (L-ratio = 65.10, df =
21, p , 0.001).

C:N was lower in riffles than in pools (L-ratio =
46.22, df = 44, p , 0.001) and lower in the wet than in
the dry season (L-ratio = 35.54, df = 44, p , 0.001)
(Fig. 7G, H). C:N differed among streams (L-ratio =
90.67, df = 40, p , 0.001) and was negatively related
to NH4

+ concentrations (L-ratio = 29.21, df = 44, p ,
0.001; Fig. 5D). C:P was lower in riffles than in pools
(L-ratio = 50.87, df = 34, p , 0.001) and in the wet
than in the dry season (L-ratio = 8.10, df = 34, p =
0.004; Fig. 7I, J). C:P differed among streams (L-ratio
= 16.89, df = 30, p = 0.005), increased with % open
canopy (L-ratio = 10.98, df = 34, p , 0.001), and
decreased with NH4

+ (L-ratio = 27.00, df = 34, p ,
0.001), NO3

2 (L-ratio = 18.87, df = 34, p , 0.001), and
SRP (L-ratio = 36.27, df = 34, p , 0.001; Fig. 5E)
concentrations. In pools, N:P was higher in the wet
than in the dry season (Fig. 7K, L). However, the wet
season had a negative effect on modeled epilithon N:P
(L-ratio = 4.13, df = 22, p = 0.042). N:P differed
among streams (L-ratio = 39.01, df = 18, p , 0.001),
was positively related to % open canopy (L-ratio =
8.12, df = 22, p = 0.004), and was negatively related to
NH4

+ (L-ratio = 29.22, df = 22, p , 0.001), NO3
2 (L-

ratio = 31.08, df = 22, p , 0.001), and SRP (L-ratio =
24.55, df = 22, p , 0.001; Fig. 5F) concentrations.

Discussion

Light, nutrients, and flow significantly affected
epilithon biomass and stoichiometry in Trinidadian
streams. Greater chlorophyll a concentrations were
associated with higher light levels as predicted, but
the relationship between light and epilithon stoichi-
ometry was not consistent between focal and survey
streams. Nutrient content of epilithon was signi-
ficantly greater in streams with greater dissolved
nutrients. However, we did not detect strong
relationships between nutrients and epilithon bio-
mass, possibly because of light limitation, varying
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FIG. 3. Mean (61 SE) dissolved inorganic N (DIN) (A),
soluble reactive P (SRP) (B), and the average daily total
photosynthetically active radiation (PAR) (averaged over
each sampled month) (C) for the 4 focal streams. Canopy
was thinned at UPL in July 2007 and at TAY in July 2008.
Dotted lines indicate predicted concentrations of epilithon
saturation for DIN and SRP (Newbold 1992). Grey bars
indicate dry-season months. See Fig. 1 for site codes.
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periods between sampling times and scouring flows,
or high nutrient availability at some locations. Our
data suggest that epilithon communities in these
Neotropical streams are influenced by numerous
factors that structure epilithon biomass and affect
their stoichiometry differentially through space and
time.

Flow regime, habitat, and epilithon variability

Tropical streams are characterized by relatively
consistent irradiance and temperature, which poten-
tially enable epilithic growth throughout the year.

However, seasonal changes in flow could strongly
affect the benthic ecology of these systems. Flow can
be an important factor controlling algal biomass in
temperate streams (Biggs and Close 1989, Dodds et al.
1996, Francoeur et al. 1998), and flow variables (wet/
dry seasons, days since flow events) were strong
predictors of epilithon dynamics in our study.
Congruent with our predictions, epilithon AFDM
was almost always greater when sampled following
a period of relatively stable flow conditions or in
habitats with reduced flow velocity (dry seasons and
pool habitats, respectively) than during or soon after
periods of high flow or in riffles. Wet-season flow
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FIG. 4. Mean (61 SE) z-transformed focal-stream epilithon chlorophyll a (A), ash-free dry mass (AFDM) (B), autotrophic index
(AI) (C), molar C:N (D), C:P (E), and N:P (F) averaged by pool and riffle habitats. Grey bars indicate dry-season months. z-
transformations defined by z = (X 2X)/SD.
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conditions reduced AFDM in pool habitats to levels
observed year-round in riffle habitats. In contrast,
chlorophyll a decreased with increasing days since an
8-cm increase in stage. This result might have been
caused by accumulation of fine detritus and associat-
ed shading of epilithic algae during low-flow periods
or by increased foraging by invertebrate grazers and

fish, but our data do not permit us to discriminate
between these potential mechanisms.

Season and habitat type affected epilithon nutrient
ratios in focal and survey streams. All epilithon
nutrient ratios except focal-stream C:N were lower
in the wet than in the dry season, and focal- and
survey-stream C:N and survey-stream C:P were lower
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FIG. 5. Simple linear regressions for molar C:N vs log-transformed NH4
+ concentration (A, D), molar C:P vs log-transformed

soluble reactive P (SRP) (B, E), and molar N:P vs log-transformed SRP (C, F) at focal (A, B, C) and survey (D, E, F) streams.
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in riffle than in pool habitats. However, our prediction
that epilithic nutrient ratios would decrease as the
proportion of active algae increased was not support-
ed. AI (the ratio of chlorophyll a to AFDM) was
greater in the dry than in the wet season, but we
should have observed lower C:nutrient ratios in the
dry season if nutrient ratios reflected increased active

algae relative to AFDM. Instead, the higher dry-
season C:nutrient ratios that we observed probably
reflected increased C fixation by algae rather than a
proportional increase in nutrient-poor senescent algae
and detritus.

Nutrient availability

Dissolved nutrient concentrations affected epilithon
biomass and stoichiometry in focal and survey
streams, but relationships between nutrients and
epilithon variables did not always agree with our
predictions. For example, focal-stream AFDM de-
creased with greater NO3

2, whereas chlorophyll a
content decreased with greater SRP concentrations in
both data sets. Newbold (1992) suggested that N may
limit productivity in streams at concentrations ƒ50 to
60 mg N/L, whereas P limitation might be alleviated at
concentrations .15 mg P/L. SRP in the 4 focal streams
averaged ,26 mg/L over the course of the study. This
range is similar to the range of benthic saturation
thresholds reported in previous studies (reviewed
by Hill et al. 2009). DIN averaged ,191 mg/L, a
concentration well above previously suggested
thresholds. Thus, nutrient concentrations were rela-
tively high in these streams. Some of the unexpected
relationships between nutrients and epilithon bio-
mass observed in our study might be indicative of
light limitation or might be linked to seasonal changes
in hydrology rather than to temporal patterns in
water-column nutrients. SRP concentrations at focal
and survey sites were greatest in the dry season,
whereas NO3

2 concentrations were either stable
across seasons or greater in the wet than in the dry
season (e.g., focal sites in 2008). Our study was not
designed to identify the catchment-scale mechanisms
behind seasonality in nutrient concentrations, but our
data are consistent with dilution of SRP in high-flow
conditions (e.g., Triska et al. 2006) and leaching of soil
N under wet conditions (Goller et al. 2006, Singh and
Kashyap 2007). Links between hydrology and nutri-
ent concentrations may explain why AFDM was
negatively associated with NO3

2 and positively
correlated with SRP in our study. Significantly lower
chlorophyll a in both the focal and survey sites with
increasing SRP might be a result of factors associated
with stable hydrology rather than a direct effect of P
availability on epilithon abundance.

In line with our hypotheses, the P content of
epilithon increased with increasing SRP concentra-
tions, and C:N ratios decreased with increasing
concentrations of NH4

+. However, other results were
not consistent with stoichiometric theory. For exam-
ple, NO3

2 and NH4
+ were positively correlated with
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FIG. 6. Mean (61 SE) dissolved inorganic N (DIN) (A),
soluble reactive P (SRP) (B), and % open canopy (C) in
headwater (UP), midstream (MD), and downstream (DN)
reaches of survey streams in 6 drainages in the Northern
Range of Trinidad. Dotted lines indicate predicted limits of
saturation (Newbold 1992).
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Freshwater Science jnbs-31-04-01.3d 16/8/12 10:14:17 1030 Cust # 11-141R

FIG. 7. Mean (61 SE) epilithon chlorophyll a (A, B), ash-free dry mass (AFDM) (C, D), autotrophic index (AI) (E, F), molar C:N
(G, H), C:P (I, J), and N:P (K, L) in pool (A, C, E, G, I, K) and riffle (B, D, F, H, J, L) habitats at survey streams in wet and dry
seasons. 2007 wet-season biomass data (chlorophyll a, AFDM, AI) were removed (see text for explanation).
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epilithon P content in the survey streams (decreased
N:P and C:P ratios) but not in focal streams. The
survey streams had a larger gradient of P availability
than did focal streams (where SRP was often ,15 mg
P/L), so available NO3

2 and NH4
+ in the water

column may have increased P assimilation via
production of enzymes required for P acquisition
(Arrigo 2005). However, this hypothesis will require
further investigation.

Light availability

Primary production in Trinidadian streams (Grether
et al. 2001, TNH, unpublished data) and in other small
forested tropical streams is often light limited (Davies
et al. 2008). Variation in light among focal streams was
quite large, especially when sites were compared with
the experimentally thinned reach at TAY, which was 2
to 53 more open than the other focal streams. For
comparison, Hill et al. (1995) found that a temperate
Tennessee stream was light-limited until ,7 moles
quanta m22 d21, and this value was exceeded among
focal streams only at the cleared reach of TAY. These
results are consistent with our observations that
chlorophyll a increased in focal and survey streams
with light availability and did not appear to be directly
linked to nutrient availability.

Available light was positively related to epilithon
C:P only in survey streams, where the range of P
concentrations was greater than in the focal streams.
However, available light was negatively related to
epilithon C:N in the focal streams, and epilithon N:P
increased with % open canopy in survey streams.
These results are contrary to the predictions of the
LNH that C:N should increase with light, C-fixation
rates, and reduced cellular chlorophyll a concentra-
tions (Sterner et al. 1997, Sterner and Elser 2002). Ours
is not the first study to produce results that conflict
with LNH predictions. For example, Liess et al. (2009)
found that increased light was associated with
decreased C:N, and Hill and Fanta (2008) found no
relationship between light and P content. The stoi-
chiometric changes we observed may be the result of
changes in epilithon community composition rather
than changes in cellular physiology.

Synthesis and implications

Primary production is an important energy source
in temperate and tropical streams (Minshall 1978,
Brito et al. 2006, Lau et al. 2009), but more research is
required to make meaningful comparisons across
broad latitudinal ranges (Wantzen et al. 2006, Boyero
et al. 2009). The seasonal and habitat-specific shifts in
C:N:P ratios we observed suggest that flow dictates

epilithon abundance and nutrient quality, presum-
ably by removing detrital C or by decreasing C
fixation. One implication of our results is that
organisms that cannot or do not feed selectively on
epilithon may be susceptible to seasonal variation in
food quality and may shift from energy to nutrient
limitation during periods of stable flow. For organ-
isms capable of selective feeding, habitat choice may
mediate seasonal shifts in quality because epilithon
had consistently higher chlorophyll a and nutrient
content in riffles than in pools, thereby providing
habitat-dependent variation in food quality.

Variability in epilithon composition also may affect
the elemental composition of consumers. Vertebrate
consumers are generally considered to be homeostat-
ic, but Small and Pringle (2010) showed that increased
resource quality elevated the nutrient content of
secondary producers in Costa Rican streams. They
suggested that this shift might have important
implications for organisms at higher trophic levels.
In support of this hypothesis, Dickman et al. (2008)
demonstrated that C:P ratios of carnivorous fish were
significantly related to the nutrient quality of phyto-
plankton, which in turn was mediated by light and
nutrients. In Trinidadian streams, local site conditions
explain stoichiometric variation in Trinidadian gup-
pies (El-Sabaawi et al. 2012), which use epilithon as a
food source (Zandonà et al. 2011), and influence N
recycling (Palkovacs et al. 2009, Bassar et al. 2010).
The effect of food quality on higher trophic levels in
these systems is poorly understood, but our data
indicate that spatial and temporal variation in epili-
thon quality responds to physical and chemical
drivers and provide an initial step toward under-
standing how bottom-up factors influence food
quality in tropical streams.

Conclusions

Our results suggest that explicit and integrated
consideration of flow, nutrient, and light variables is
necessary to provide a predictive framework for
understanding epilithon biomass and nutrient fluxes
between inorganic nutrient pools, primary producers,
and higher trophic levels. Flow and habitat variables
were useful for modeling epilithon biomass and
stoichiometry, but our predictions based on the
LNH were only partially supported. Nutrient avail-
ability consistently increased the nutrient content of
epilithon as predicted, but the effects of light were
often insignificant or contrary to our hypotheses. This
result suggests that the effects of light on epilithon
stoichiometry in field conditions are complex and
may differ through time and space by interacting with
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other unmeasured variables. More effort is needed to
elucidate the effects of these interacting controls on
epilithon, especially in natural settings, to refine pre-
dictions and improve existing stoichiometric frame-
works such as the LNH.
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